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Abstract

Kinetic parameters are commonly estimated from
dynamically acquired nuclear medicine data by first
reconstructing a temporal sequence of images and subsequently
fitting the parameters to time-activity curves generated
from regions of interest overlaid upon the image sequence.
Biased estimates can result from images reconstructed using
inconsistent projections of a time-varying distribution of
radiopharmaceutical acquired by a rotating SPECT system.
To overcome this problem we investigated the estimation of
kinetic parameters directly from projection data by modeling
the data acquisition process. To accomplish this it was
necessary to parametrize the spatial and temporal distribution
of the radiopharmaceutical within the SPECT field of view.

In a simulated transverse slice, kinetic parameters were
estimated for simple one compartment models for three
myocardial regions of interest, as well as for the liver.
Myocardial uptake and washout parameters estimated by
conventional analysis of noiseless simulated data had biases
ranging between 1–63%. Parameters estimated directly from
the noiseless projection data were unbiased as expected, since
the model used for fitting was faithful to the simulation.
Parameter uncertainties for 500,000 detected events ranged
between 1–25% for the myocardial uptake parameters and
1–18% for the myocardial washout parameters.

I. I NTRODUCTION

Kinetic parameters are commonly estimated from
dynamically acquired nuclear medicine data by first
reconstructing a temporal sequence of images and subsequently
fitting the parameters to time-activity curves generated from
regions of interest (ROIs) overlaid upon the image sequence.
Since dynamic single photon emission computed tomography
(SPECT) data acquisition involves movement of the gantry
and the distribution of radiopharmaceutical changes during
the acquisition, projections at different angles come from
different tracer distributions. Images reconstructed from
these inconsistent projections can contain artifacts that lead
to biases in the estimated kinetic parameters. The artifacts
can be particularly problematic in images reconstructed from
projections acquired during the early time frames of a dynamic
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study when the tracer distribution is changing most rapidly
(Fig. 1).

To overcome this problem we investigated the estimation of
kinetic parameters directly from projection data by modeling
the data acquisition process of a time-varying distribution of
radiopharmaceutical detected by a rotating SPECT system. To
accomplish this it was necessary to parametrize the spatial and
temporal distribution of the radiopharmaceutical within the
SPECT field of view.

Direct estimation of kinetic parameters from projections
has become an active area of research. Chiao et al. [1, 2]
have jointly estimated myocardial ROI boundaries and
one-compartment kinetic model parameters directly from
simulated positron emission tomography (PET) projections.
Limber et al. [3] have fit single decaying exponentials to
each pixel in a 16×16 array directly from simulated SPECT
projections. We have fit one-compartment models to ROIs
encompassing a 3×3 array directly from simulated SPECT
projections, by first estimating the exponential factors using
linear time-invariant system theory and then estimating the
multiplicative coefficients using linear estimation [4].

Estimation of ROI time-activity curves from projections
has been investigated. Huesman [5] has described a method to
estimate the average activity in a 2-D ROI, and Defrise et al. [6]
have extended these ideas to 3-D. To compensate for physical
factors such as attenuation and detector resolution, Carson [7]
has described a method for estimating activity densities
assumed to be uniform in a set of ROIs using maximum
likelihood, and Formiconi [8] has similarly used least squares.

The work presented here builds on the work of Carson
and Formiconi, as well as on simulations which we have
performed in 2-D and 3-D using idealized non-attenuating
phantoms [4, 9, 10]. In this 2-D simulation we use the more
realistic mathematical cardiac torso (MCAT) phantom [11] and
include the effects of attenuation. We compare the estimation
of kinetic parameters directly from projections with estimation
from tomographic determination of time-activity curves, for
three myocardial ROIs and for the liver.

II. ESTIMATION OF KINETIC PARAMETERS

DIRECTLY FROM PROJECTIONS

We formulate a nonlinear estimation problem using a
spatial and temporal parametrization of the time-varying
distribution measured with a single rotating detector SPECT
system. The one-compartment model shown in Fig. 2 is
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Fig. 1 Artifacts are apparent in the upper sequence of images reconstructed from the inconsistent projections of a relatively rapidly changing
tracer distribution acquired during the early time frames of a simulated dynamic SPECT study. The lower sequence of images is obtained when
the tracer distribution does not change during the time frames.

assumed for simulated myocardial and liver tissue with a
known blood input function, which would correspond to the
kinetics of teboroxime [12, 13, 14]. Parameters are estimated
by minimizing a weighted sum of squared differences between
the projections and the model predicted values.

The expression for uptake in tissue typem is

Qm(t) = km
21

∫ t

0

B(τ)e−km
12(t−τ)dτ = km

21V
m(t), (1)

whereB(t) is the known blood input function,km
21 is the uptake

parameter, andkm
12 is the washout parameter. Total activity in

the tissue is given by

Qm(t) + fm
v B(t) = km

21V
m(t) + fm

v B(t), (2)

wherefm
v is the fraction of vasculature in the tissue.
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Fig. 2 Compartmental model for99mTc-teboroxime in the
myocardium.

This analysis starts with an image segmented into blood
pool, M tissue types of interest, and background. In order to
obtain tissue boundaries, the patient is assumed motionless
during data acquisition, and a reconstructed image (for
example, via the projections at the time of strongest signal,
or via the summed projections) is segmented to provide
anatomical structure. The image intensity at each segmented
region is not used.

Using the segmented image and a measured attenuation
distribution, the attenuated static projections of the blood
pool, tissue, and background regions are calculated for
each projection ray of each projection angle. These are the
sinograms that would be observed for each region, given a
static unit concentration of activity within the region. With no
attenuation, the static projections correspond to the lengths
of the blood pool, tissue, and background regions along each
projection ray of each projection angle.

The number of projection rays per projection angle is
denoted byN , the number of projection angles per rotation by
J , and the number of rotations byI. Thus, there are a total
of IJN projection rays distributed in time and space. For a
typical projection ray at anglej and positionn, the attenuated
static projections of the blood pool, background, and tissuem
are denoted byujn, vjn, andwm

jn, respectively. Fig. 3 shows
the attenuated static projections of the ROIs in the MCAT
phantom (Figs. 4 and 5) used in the computer simulations
described in Section III. The amplitude of the background
activity is denoted byg, and the background is assumed to be
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Fig. 3 Attenuated static projections of the ROIs in the MCAT phantom shown in Figs. 4 and 5. These are the sinograms that would be observed
for each region, given a static unit concentration of activity within the region.

proportional to the blood activity. The projection equations can
be expressed as

pijn =
∫ tij

tij−∆t

{
ujnB(τ) + vjngB(τ)

+
M∑

m=1

wm
jn [km

21V
m(τ) + fm

v B(τ)]

}
dτ , (3)

where the timetij is equal to[j + (i − 1)J ]∆t. The constants
ujn, vjn, andwm

jn are pure geometrical weighting factors, and
the projection equations are linear in the unknownsg, km

21, and
fm

v . The nonlinear parameters,km
12, are contained inV m(t).

The criterion which is minimized by varying the model
parameters is the weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

N∑
n=1

(pijn − p∗ijn)2

σ2
ijn

, (4)

wherep∗ijn are the measured data andσijn are their statistical
uncertainties. An estimate of the covariance matrix for the
resulting model parameterŝΘ = ( k̂m

12 ĝ k̂m
21 f̂m

v ) is

cov(Θ̂) =
(

1
2

∂2χ2

∂Θ2

∣∣∣∣
Θ=Θ̂

)−1

. (5)

The statistical uncertainties of the parameter estimates,Θ̂, are
the square roots of the diagonal elements of the covariance
matrix given by (5).

As discussed above, (3) is a linear function of the
parametersg, km

21, andfm
v . Therefore the model it describes

is called a conditionally linear, partially linear, or separable
nonlinear model [15, 16]. Using standard techniques
for removing conditionally linear parameters, (4) can be
considered to be a function of only the nonlinear washout
parameters,km

12. We have used this technique to obtain the
results presented here.

III. C OMPUTERSIMULATIONS

A transverse slice of the MCAT phantom was used in a
simulation to evaluate the ability to estimate kinetic parameters
directly from attenuated SPECT projection data. The simulated
emission distribution, shown in Fig. 4, contained blood,
background, liver, and three myocardial regions of interest
(normal myocardium, septal defect, and lateral defect). The
emission distribution was assumed to be attenuated using the
attenuation distribution shown in Fig. 5, calculated for 140 keV.
The blood input function and the simulated tissue activity
curves are shown in Fig. 6.

There were 13 parameters to estimate: the amplitudes,
decay rates, and vascular fractions for the liver and the
three myocardial regions and the amplitude of the overall
background. Using these 13 parameters and the known blood
input function, a dynamic sinogram was formed representing
the attenuated projections of the six constituent components
(blood, background, liver, normal myocardium, septal defect,
lateral defect), which comprise the image volume. The
15 min data acquisition protocol consisted of 15 revolutions
of a single-head SPECT system, acquiring 120 angles per
revolution and 64 parallel projection samples per angle.
Neither scatter nor geometric point response were included in
the simulation.

Parameters were estimated by minimizing a weighted
sum of squared differences between the projection data
and the model predicted values (4). The results of the
simulation are shown in Table 1 and Fig. 7. Direct parameter
estimation from noiseless inconsistent projections (column d
of Table 1) was compared with estimation from dynamic
reconstructions (column b). Fifteen 41×41 attenuation
corrected reconstructions were formed by using 30 iterations
of the conjugate gradient algorithm [17]. Thirty iterations were
sufficient to assure that the reconstructions had converged.
Line-length weighting was used in the formulation of the
projections. The pixel width was 1.5 times the bin width.
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Fig. 4 MCAT emission phantom
used in simulation.

Fig. 5 MCAT attenuation phantom
used in simulation.
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Fig. 6 Simulated time-activity
curves for regions-of-interest.

ROIs were defined by taking all homogeneous blood pool,
background, and liver pixels, as well as all pixels containing at
least 90% of one of the three myocardial tissue types. Direct
parameter estimation from projections was also compared to
the direct estimation of region time-activity curves (column c)
using the method proposed by Formiconi [8].

Parameter estimates obtained from conventional analysis
of noiseless inconsistent projections had biases ranging
between 5–63% for the myocardial uptake parameters and
1–61% for the myocardial washout parameters. The large
biases in the septal and lateral defects are not unexpected
considering the long tomographic acquisition times of 1 min.
The estimates using Formiconi’s method had less bias in
the septal defect and more bias in the normal myocardium
and the lateral defect, compared to the conventional method.
Parameters estimated directly from the noiseless projection
data were unbiased as expected, since the model used for
fitting was faithful to the simulation. In addition, multiple
local minima were not encountered regardless of noise levels
simulated. Parameter uncertainties for 500,000 detected events
(column e) ranged between 1–25% for the myocardial uptake
parameters and 1–18% for the myocardial washout parameters.

Parameter estimates were also obtained from noiseless
projections forced to be consistent over the 1 min time frame
of the simulated dynamic data acquisition. Over the course
of each revolution of the SPECT system, the activity in each
region was held constant at the average of the continuously
varying value that yielded the inconsistent projections. For
the conventional analysis the biases changed very little for the
main myocardium and were reduced substantially for the septal
and lateral defects (column b′). The estimates obtained using
Formiconi’s method were unbiased for the forced consistent
projections, as expected (column c′).

IV. SUMMARY

The combination of gantry motion and the time-variation
of the radiopharmaceutical distribution being imaged results in
inconsistent projection data sets. Estimating kinetic parameters
from time-activity curves taken from reconstructed images
results in biases. Some of these biases are reduced and some
are increased if the time-activity curves are estimated from

the projection data [8]. Estimating the kinetic parameters
directly from the projections removes all bias for faithfully
modeled noiseless data. Implementation of this strategy
requires a spatial and temporal model of the distribution of
radiopharmaceutical with the SPECT field of view.
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a b c d e b′ c′

k1
21 0.700 0.665 0.767 0.700 0.009 0.669 0.700

normal myocardium k1
12 0.150 0.149 0.162 0.150 0.002 0.152 0.150

f1
v 0.150 0.160 -0.032 0.150 0.022 0.187 0.150

k2
21 0.300 0.112 0.314 0.300 0.060 0.291 0.300

septal defect k2
12 0.300 0.116 0.286 0.300 0.048 0.279 0.300

f2
v 0.100 0.394 0.110 0.100 0.097 0.134 0.100

k3
21 0.500 0.218 0.096 0.500 0.126 0.480 0.500

lateral defect k3
12 0.600 0.247 0.214 0.600 0.105 0.467 0.600

f3
v 0.100 0.278 0.199 0.100 0.115 0.137 0.100

k4
21 0.900 0.924 0.888 0.900 0.005 0.923 0.900

liver k4
12 0.0020 0.0020 0.0006 0.0020 0.00060.0020 0.0020

f4
v 0.200 0.236 0.325 0.200 0.012 0.198 0.200

background g 0.200 0.200 0.201 0.200 0.001 0.199 0.200

Table 1

Results of kinetic parameter estimation from noiseless inconsistent projections: (a) simulated values; (b) values from dynamic reconstructions;
(c) values from direct estimation of region time-activity curves [8]; (d) values from direct estimation from projections; (e) estimated uncertainties
of values from direct estimation for 500,000 detected events using (5). Results of kinetic parameter estimation from noiseless consistent
projections: (b′) values from dynamic reconstructions; (c′) values from direct estimation of region time-activity curves [8]. Units for uptakekm

21

and washoutkm
12 are min−1.
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Fig. 7 Estimated values for the uptake parameterskm
21 (left) and the washout parameterskm

12 (right). The gray bars depict the estimates obtained
from conventional and Formiconi analyses of noiseless inconsistent projections (columns b and c in Table 1). The white bar depicts the unbiased
estimate (i.e., the simulated value) obtained directly from the projections, along with its estimated uncertainty predicted for 500,000 events
using (5). The black bars depict the estimates obtained from conventional and Formiconi analyses of noiseless consistent projections (columns b′

and c′). Note that the units for the liver washout parameter,k4
12, are (100 min)−1.
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